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Abstract—Nowadays, data analytics is utilized on edge based
systems to perform near real-time decisions in proximity of the
user. When performing near real-time decisions on the Edge, we
need historical data to perform accurate data analytics. Since
storage capacities on the Edge are limited, we are faced with a
challenge to balance the quantity of data stored with the quality
of near real-time decisions. In this paper, we present a three-
layer architecture model for data storage management on the
Edge including an adaptive algorithm that dynamically finds
a trade-off between providing high forecast accuracy necessary
for efficient real-time decisions, and minimizing the amount of
data stored in the space-limited storage. We focus on time series
data, typical in the context of sensor-based monitoring in IoT
environments. By using the proposed approach it is possible to
reduce the amount of stored data by an average 80.27% without
affecting specified threshold for prediction accuracy.

Index Terms—edge systems, edge storage management, fore-
cast accuracy, real-time decision.

I. INTRODUCTION

Recently, IoT devices are used in a wide set of applications,

such as Smart Cities [1], Health-care [2] and Traffic Man-

agement [3]. Managing such systems generally requires three

steps: (1) collecting data through sensors, (2) processing these

data and (3) acting based on the obtained information [4]. In

most of existing systems, such processing is done in massive

data centers. However, since massive data centers are usually

not in the vicinity of the IoT end device producing the data,

transferring data from sensors to massive data centers may

result in high latency. Since such systems have very strict

latency requirements [5], reducing the time for collecting and

processing the data of IoT devices is of paramount importance.
Recently, Edge analytics has become one of the most

widely used solutions to this problem [6]. In Edge analytics,

analysis and collection of data coming from IoT devices is

performed in nodes that are closer to them than massive data

centers. By placing data analytics close to the source of data,

Edge architectures can reduce the amount of data traversing

the network, thus minimizing latency and overall costs [7].

Plus, they allow to get fast and accurate responses, thanks to

the possibility to analyze batch and streaming measurements

while simultaneously moving data analytics to the Edge [8].

However, storing a huge amount of data on the Edge can result

in several problems due to the storage limitations on the Edge

nodes [9]. As real-time analytics require a lot of historical

data to perform accurate predictions, storage efficient real-time

analytics becomes a key issue on the Edge [10].

Storage management problem has been discussed by works

like [11], [12] but they consider neither limitation of storage

capacity on the Edge nor accuracy of near real-time analytics

for sensitive Edge systems. Due to the always increasing use of

data exchanged by IoT devices [13] and the growing tendency

of using Edge nodes for performing real-time analytics on

them, proposing a way to reduce the amount of data stored on

the Edge nodes without affecting forecast accuracy can bring

substantial benefits in this context.

In this paper, we present a three-layer architecture model

for efficient data storage management in Edge analytics. The

proposed architecture ensures flow, analysis and storage of

data in order to cope with limited storage capacity on the Edge.

Our solution also supports dynamic analysis of monitoring

data to cope with behavior of unpredictable systems requiring

constant monitoring of data continuously read by the sensors.

Based on the proposed model, we derive an adaptive algorithm

that finds a trade-off between reducing the necessary storage

space needed and accuracy of forecasts. We utilize different

forecast methods and different methods for measuring predic-

tions accuracy to determine the amount of data that need to be

stored in a Edge node. Finally, we evaluate the applicability of

our approach in an experimental scenario by utilizing different

datasets.

This work targets time series data coming from IoT sensors.

We evaluate our adaptive algorithm performing simulations

with the R forecast package [14], as done by works like [15],

[16]. The simulation results show an average potential reduc-

tion of stored data amount by an average 80.27%, while keep-

ing accuracies of prediction above a user-defined threshold.

The rest of the paper is organized as follows. Background on

time series data, their role and related forecasting methods are

covered in Section II. Section III presents the Edge architecture

model for Edge storage management. In Section IV the design

principles of the algorithm are shown, while Section V gives

a detailed description of the proposed adaptive algorithm. In

Section VI, we present the evaluation of the proposed approach

and discuss the results. Related work is outlined in Section VII

and Section VIII concludes the paper.

II. BACKGROUND ON TIME SERIES FORECAST

In this section, we discuss methodologies used to define the

adaptive algorithm and to implement architecture for efficient



edge storage management. We discuss the data types used in

this paper and methods for measuring accuracy of forecasts.

A. Time series data

Generally, data generated by sensor-based monitoring are

classified as time series data [17]. A time series is a sequence

of data points made over a continuous time interval, where

each data point consists of a time stamp and one or multiple

values. In this paper we consider only this type of data,

in contrast to other IoT data types such as video, audio,

status or location data. Analysis and forecasting based on

time series has been a very active research area over the

past few decades. Thus, based on historical data it is possible

to predict the future values of time series data. Determining

accuracy of time series forecasting is an essential step in

many decision-making processes. For this reason, improving

the effectiveness of forecasting models is of great interest

for many time-sensitive Edge systems [18]. Based on time

series forecasting and analysis of unusual data behavior, life-

threatening situations and system failures can be detected even

before they occur [17].

B. Forecasting methods and forecast accuracy measure

The most widely used forecasting techniques are the Auto-

Regressive Integrated Moving Average (ARIMA) [19] and the

Exponential Time Smoothing (ETS) [20]. Both techniques

can also deal with unusual time series patterns, estimate

parameters and compute forecasts without user intervention

[15]. Unusual time series have features such as unusually

high seasonality [21]. Thus, both methods are suitable for

Edge analytics, where analysis of data has to be performed

automatically.

To assess the accuracy of the forecasts, we utilize the

Mean Absolute Percentage Accuracy (MAPA) measure. This

measure is derived from Mean Absolute Percentage Error

(MAPE) [22] accuracy measure and expresses accuracy of

prediction based on forecast error. We compute MAPA by

calculating the MAPE between our forecasts and the original

dataset, as shown in Equation 1.

MAPA(Y, Ŷ ) = 100− MAPE(Y, Ŷ ) (1)

MAPE(Y, Ŷ ) is equal to 100
n

∑n
i=1 | (yi−ŷi)

yi
|, where Y and Ŷ

are respectively the set of the original values and the set of

forecasts, n is the number of data points, yi − ŷi represents

forecast error, and yi and ŷi represent respectively the i-th

original value of an individual data point and its prediction.

The choice of MAPA allows us to have an accuracy measure

based on MAPE. MAPE facilitates comparison of forecast

accuracy on different time series since it is scale-independent.

III. ARCHITECTURE FOR EDGE STORAGE MANAGEMENT

Figure 1 represents the proposed three-layer architecture

model for Edge storage management on Edge nodes. The

goal of the presented Edge architecture is to devise a self-

management process to automatically manage limited Edge

data storage without intervention of third party or providers.

Each Edge monitoring process includes three software layers,

namely: Cloud layer, Edge layer and Gathering layer. Even

though the main scope of this paper is the Edge layer, we

describe all of them for the sake of completeness.

a) Cloud layer: represents data repository which stores

all historical data collected from monitored systems. This layer

performs big data analytics and delivers useful information

based on entire datasets.

b) Edge layer: manages data storage process based on

our proposed adaptive algorithm. Further, this layer performs

local analytics and extracts actionable information from avail-

able data. Edge layer consists of several components:

• Monitoring component collects the data, monitors average

amount of incoming data, monitors storage space, sends

information on storage capacity and control commands

to IoT actuators;

• Data preparation component receives data from monitor-

ing component and performs data preparation operations

on these data (e.g., filling missing data, removing unnec-

essary data, normalizing data). After this step, the data

are sent either to Edge data storage or to the Cloud layer

via mediator component, based on the specification list;
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Fig. 1. Architecture for Edge storage management



• Adaptive algorithm provides the core of the data storage

management. It receives data from the storage, checks

the specification list, and implements design principles

provided in Section IV;

• Specification list consists of user-defined information

for monitored data and for adaptive algorithm such as:

forecast period specified by client for monitored process

or by the edge system whose data will be analyzed,

forecast accuracy threshold and other rules (e.g., which

method to use for forecasts, which data do not have to

be forwarded to the Cloud data repository);

• Storage is responsible for (1) storing data received by data

preparation component, (2) sending data to the adaptive

algorithm, (3) receiving data retrieved by mediator com-

ponent and (4) storing adaptive algorithm results;

• Mediator component requests to the cloud repository the

needed range of data and forwards them to the storage.

c) Gathering layer: transmits IoT measurements to an

Edge node, either indirectly via gateway (in case of devices

that are not capable of sending data through IP) or directly

(IP-enabled devices). To reduce communication costs and

latency in distributed sensor networks [23], gateways help in

aggregation of sensor data by sending them in appropriate

message format and size to the monitoring component.

In this work, we focus on the data storage management

process, describing the adaptive algorithm and its interaction

between specification list and storage, that is described in the

following sections. The other layers are left as future work.

IV. ALGORITHM DESIGN

Considering previous architecture model, our algorithm is

shown in Figure 2, including following phases: (1) learning

phase, (2) validation of the specification list, (3) multiple

forecast iteration on available dataset, (4) detection of stable

accuracy clusters, (5) data management action, (6) validation

of available dataset. The learning phase is executed only once,

as it provides information used by all the other phases, that

are continuously executed starting from phase 2. We describe

now each one of them:

Learning phase

Validation of the 
specification list

Multiple forecast 
iteration on 

available dataset

Detection of stable 
accuracy clusters

Data management 
action

Validation of 
available dataset

Fig. 2. Algorithm design principles.

a) Learning phase: the aim of the first phase is to derive

information about data the first time the algorithm is executed.

Such information is used during the other phases. This phase

includes actions such as time series pattern recognition, that

is useful to determine the most appropriate forecast method,

allowing us to select the most appropriate method for that

specific pattern. Lin et al. [24] discussed the state-of-the-art

techniques for time series pattern recognition used in this

paper. Other information, such as periodicity of time series

data and seasonality over a certain period, can be useful to set

up a forecast method [25].

b) Validation of the specification list: in this phase the

specification list defined by a client is validated. During the

execution of the proposed algorithm, clients can make some

changes in the specification list anytime, such as setting

forecast accuracy threshold, a new forecast period or different

forecast methods. Any changes made by the client can affect

the whole Edge storage management. Thus, there is the need

of checking this list each time a cycle of execution starts.

c) Multiple forecast iteration on available dataset: this

phase takes one of the forecasting methods (in our case ETS

or ARIMA) with specified accuracy threshold and forecast

period from the specification list. The available dataset is

separated into two datasets representing training and test data.

Test data are always fixed and equal to the number of data

points specified by the client in the specification list as they

are used only for accuracy evaluation purposes. The amount

of training data is reduced in each iteration by a certain

amount of data in order to find parts of dataset that results

in required forecast accuracy. At the end of each iteration,

forecast accuracy measures are added in a vector to be used

in the next phase.

d) Detection of stable accuracy clusters: the aim of this

step is to find stable clusters of accuracy values within the

vector returned by the multiple forecast iteration phase.

Definition 1. A stable cluster is a set of subsequent data points
in the vector whose standard deviation for contained values
is less than a given percentage s of the standard deviation of
entire vector.

Accordingly, in order to provide reliable information regard-

ing future system behaviors our predictions must be stable.

When the forecast iteration process is finished, a technique

for cluster detection is applied on the vector, that consists in

measuring forecast accuracy from each of forecast iterations.

The method finds stable clusters of forecast accuracies that

are close to the threshold level defined in the specification

list. More details about this in Sections V-A and V-B.

e) Data management action: this step either releases

storage or queries for more data to mediator component. There

are three possible cases: (1) We can reach stable cluster with

desired accuracy with fewer amount of data. In this case, all

data not needed to obtain the observed accuracy cluster are

deleted; (2) Forecast accuracy of stable cluster is higher with

increased amount of training data, e.g. forecast based on all

available data from the storage, then mediator component can



send a request to cloud data repository for more data (e.g., for

seasonal pattern it can retrieve one more period of data); (3)

None of resulting accuracy of stable clusters meet the specified

accuracy threshold by the client. In this case data management

action will select the one with highest forecast accuracy but

obtained with less data points.

f) Validation of available dataset: algorithm checks stor-

age for new data that are collected while the data management

action is completed. In the next cycle both data received from

data preparation and from mediator component are included.

The adaptive algorithm is continuously repeated and conse-

quently, it tries to keep the lower quantity of data on the Edge,

while trying to keep a level of accuracy that is equal to the

forecast accuracy threshold value in the specification list. The

relevance of old information can be lower, unless prediction

accuracy level shows that some stable clusters occur (close

to specified threshold) based on older data. In that case, if

algorithm feedback shows that accuracy increases with more

data from the past, and amount of current stored data will soon

exceed storage limitation, then this kind of data analytics will

be performed in the cloud environment. Thus, the approach

requires to constantly monitor the evolution of the accuracy

rate for performed forecasts.

V. ADAPTIVE ALGORITHM

According to the steps that we defined in Section IV,

we develop an algorithm that is capable of reducing

the amount of monitored data without reducing forecast

accuracy. All these steps are performed in three main

algorithms: the FindStableClusters (Section V-A),

the FindAppropriateClusters (Section V-B) and the

AdaptiveAlgorithm (Section V-C). Each one of these

is detailed in the following sections. Table I describes the

notation used.

TABLE I
DEFINITIONS

Symbol Definition
γ Vector containing forecast accuracies from the

forecast iteration phase.
Sfactor Scaling factor dividing standard deviation of γ

used to determine threshold for finding clusters.
sd Standard deviation of γ.

CLth Threshold in identifying stable forecast accuracy
clusters.

tempv Temporal vector that contains standard deviations
calculated from the sampled vector γ.

C Matrix containing recognized stable clusters.
accth Forecast accuracy threshold specified by the client

in the specification list.
CLap Appropriate cluster that has stable forecast accuracy.
fp Forecast period specified in the specification list

by client.
Sdata1, Sdata2 Available dataset in storage.
periodicity Period contained in seasonal data.
dfactor Decrement factor that decreases available dataset

Sdata during the forecast iteration phase.

A. Find stable clusters

Detection of smooth behaviors for consecutive forecast ac-

curacies previously calculated due the forecast iteration phase,

represents the cornerstone of our algorithm. There are many

clustering techniques [26] such as partitioning, hierarchical or

density-based, but they are not suitable for our case, because

often they require specification of a certain number of clusters

beforehand and additionally they separate the entire dataset

based on similarity. Our case requires a dynamic approach

in which we discover as less as possible number of clusters

based on Definition 1, and considering only corresponding

parts of the entire dataset. The process consists of three

steps: first, we calculate overall standard deviation for all

forecast accuracies and mark it as a baseline. Second, forecast

accuracies are grouped in clusters of fixed length and standard

deviation is calculated per cluster. A cluster contains at least

three members. Third, obtained deviations are compared to

the baseline based on the previously calculated threshold.

Consequently, stable clusters are used to show where the

forecast accuracies are stable. Pseudo-code for the method of

the cluster accuracy detection is presented in Algorithm 1.

The method requires vector γ consisting of forecast accuracy

measures (MAPA) from the forecast iteration process and

scaling factor Sfactor, that is used for threshold calculation.

In line 1, algorithm calculates standard deviation sd of the

entire vector γ and divides the result in line 2 by scaling

factor Sfactor for the purpose of setting a threshold CLth for

finding clusters. The threshold CLth differs between different

datasets, because each measurement has its own scale of

values with unpredicted volatility. By default, scaling factor

is always equal to 5 in the first attempt of stable clusters

detection. This means that only stable clusters with s equal

to 20% (See Definition 1) of the baseline standard deviation

will be selected. Howeever, even with the fixed threshold it

is possible to have no clusters. In case that is impossible

to meet any stable clusters for the specified threshold, i.e.

since forecast accuracies show greater dispersion, threshold is

increased and the process is repeated. Decreasing the scaling

factor from 5 to 4, the s becomes 25% of the baseline for

detecting stable clusters, by setting in Algorithm 3. Further,

in line 3 standard deviation will be calculated for each of

grouped iteration results in sliding window in vector γ and

then stored in temporal vector tempv . Before searching for

stable clusters, algorithm initializes two counters and creates

one empty matrix in lines 4-6, namely, counter i will count

clusters in tempv and counter j will denote discovered stable

clusters in matrix C including appropriate attributes such mean

value of forecast accuracies in cluster, and corresponding range

of cluster indexes. Lines 7-27 show loop for detecting stable

clusters. The algorithm starts from the beginning of tempv
(line 7) and checks if standard deviation for the first cluster

is below threshold CLth (line 8). If cluster is recognized as

a stable, corresponding data will be added in a new row of

matrix C (lines 9-12). In some cases, stable clusters can be

wider, so it is necessary to check the neighbor cluster (lines



Algorithm 1: FindStableClusters
Input: Vector of iteration results γ, int Sfactor

Output: Matrix C that represents stable accuracy clusters
with corresponding information

1 Calculate sd ← standard deviation of entire vector γ
2 Calculate CLth ← sd

Sfactor

3 Create and fill vector tempv applying standard deviation
on sliding window of length 3 on vector of iteration
results γ

4 Set counter i ← 1
5 Set counter j ← 1
6 Create empty matrix C with 3 columns representing mean

value, start and end index
7 while i < length(tempv) do
8 if tempv[i] < CLth then
9 Add cluster in C such that

10 C[j, 1] ← mean value of corresponding range in γ;
11 C[j, 2] ← start index of corresponding data from

storage;
12 C[j, 3] ← end index of corresponding data from

storage;
13 Increment i
14 if tempv[i] < CLth then
15 while tempv[i] < CLth do
16 Update mean value C[j, 1] for the

extended cluster;
17 Update end index C[j, 3] for the extended

cluster;
18 Increment i
19 end
20 Increment j
21 else
22 Increment i
23 Increment j
24 end
25 else
26 Increment i
27 end
28 end
29 Return C

13-14) and if the new one is recognized as stable then it

will continue to check other neighbors (line 15). For each

new cluster in a row recognized as stable, algorithm extends

existing cluster updating its corresponding mean value (line

16) and end index (line 17) and check the next cluster (line

18). When there are no more stable clusters in a row, a

place for new stable cluster is prepared increasing counter j
(line 20). In case the next cluster is not recognized as stable

(line 21), algorithm will simply close the existing cluster and

check the next cluster (lines 22-23). For each cluster that is

not recognized as stable (line 25), algorithm will increment

counter (26) and loop back to line 7. Finally, matrix C will

be returned in line 29. Each row in the matrix represents one

cluster with the corresponding attributes.

B. Find appropriate cluster

Since it may happen that Algorithm 1 returns more than

one stable cluster, we need to define how we select the most

appropriate one. Stable clusters can differ in mean value and

in amount of used data. Therefore, it is needed to set priorities

for the selection. We propose a two-stage process for cluster

selection and a corresponding algorithm. First priority is to

satisfy the specified threshold defined by client. A stable

cluster is appropriate if its mean value is the closest to the

threshold value in specification list, as defined in Equation 2,

CLap = argmin
C[i]

(|C[i]mean value − accth|) (2)

where C[i]mean value is the mean value of forecast accuracies

included in cluster C[i], and accth denotes forecast accuracy

threshold specified by client in the specification list. The

appropriate cluster CLap becomes the one with the minimum

absolute difference between accth and C[i]mean value. Second

priority is to find a cluster that has higher accuracy but using

less data. If such stable cluster exists, it will be the newly

selected cluster.

Algorithm 2 describes the cluster selection process. First,

it starts in line 1 checking if there are one or more stable

clusters. The else branch in line 11 is executed only if one

stable cluster is recognized and it will become the appropriate

cluster (line 12), otherwise, algorithm needs to find appropriate

cluster (lines 2-10). Considering the priority, appropriate clus-

ter becomes the one that is closest to the specified accuracy

threshold (line 2). Further, all stable clusters (line 3) that

have better accuracy than selected CLap, i.e. higher mean

value, and whose start index begins after end index of selected

CLap (line 4), become potential appropriate clusters (line

5). If there are such clusters (lines 8-10), one of them that

includes less data, i.e. which has the lowest start index (line

9), will be selected as a new appropriate cluster CLap. Finally,

appropriate cluster CLap is returned in line 14.

Algorithm 2: FindAppropriateCluster
Input: Matrix C that contains discovered stable clusters, int

accth
Output: Appropriate cluster CLap

1 if C has more than 1 cluster then
2 Compute CLap using Equation 2
3 for each cluster i ∈ C do
4 if C[i]mean value > CLmean value

ap AND
C[i]start index > CLend index

ap then
5 Add C[i] to temporary matrix A
6 end
7 end
8 if A is not empty then
9 CLap ← Ai with minimum starting index

10 end
11 else
12 CLap ← C[0]
13 end
14 Return CLap

C. Adaptive algorithm

The proposed algorithm is based on calculating prediction

accuracies including the detection of clusters of stable ac-

curacy values. Algorithm 3 requires forecast period fp and

accuracy threshold accth that are specified in the specifica-

tion list, and arrays Sdata1 and Sdata2 which denote all



Algorithm 3: AdaptiveAlgorithm
Input: int fp, int accth, array Sdata1, array Sdata2

1 periodicity ← findPeriodicity(Sdata1)
2 if (periodicity > 1) then
3 dfactor ← periodicity
4 else
5 dfactor ← fp

2
6 end
7 while length(Sdata1) > fp do
8 Perform method (Sdata1, periodicity, fp)
9 Calculate MAPA (See Equation 1)

10 Add MAPA to vector γ
11 Sdata1 ← Sdata1 decreased for dfactor
12 end
13 Set Sfactor ← 5, i.e. set threshold on 1

5
(20% of overall

standard dev.)
14 C ← FindStableClusters(γ, Sfactor)
15 while C is empty do
16 Decrease Sfactor

17 C ← FindStableClusters(γ, Sfactor)
18 end
19 CLap ← FindAppropriateCluster(C)
20 Release storage data from array Sdata2 in range between

the oldest index and the central index of the appropriate
cluster CLap

21 Replace data in storage by data in array Sdata2

available data in storage. Lines 1-6 represent learning phase

from Section IV. First, finding periodicity (line 1) becomes

a necessity for determining the seasonality and thereby to

make better forecast. To this end, we use the method described

in [27]. In line 2, the algorithm checks the periodicity and in

case it exists, the decrement factor dfactor is set to the same

value as periodicity (line 3). Otherwise, if no periodicity is

found (line 4), periodicity is 1, that means these data are no-

seasonal. Consequently, decrement factor dfactor is set to half

the forecast period fp or the whole fp that is specified in the

specification list (line 5). Mentioned decrement factor dfactor
will decrease storage data Sdata1 in forecast iteration phase

(second phase in the model). Forecast iterations (lines 7-12)

will continue until amount of data in array Sdata1 becomes

less than forecast period (line 7). Appropriate forecast method

uses storage data Sdata1 and calculated periodicity (line 1)

to make forecast for defined forecast period fp and calculates

mean absolute percentage accuracy MAPA (lines 8-9). At the

end of each iteration the forecast measure is stored in vector

γ and a certain amount of old data is removed (line 11) based

on decrement factor dfactor. For the purpose of the phase

for accuracy cluster detection (lines 13-18), scaling factor

Sfactor is set in line 13 to number 5 representing the impact

of 20% in determining the threshold for finding stable clusters

in algorithm 1. If any stable cluster is recognized, the matrix C
gets corresponding data (line 14) such as: mean value, start and

end index of cluster. In case that matrix C does not have data,

i.e. clusters cannot be found, the algorithm will decrease the

Sfactor and keep looking for the clusters (lines 15-18). Line

19 finds appropriate cluster CLap. Finally, appropriate cluster

CLap includes mean value that is stable and closest to required

forecast accuracy in corresponding indexes. Accordingly, data

in array Sdata2 are released in range between the oldest

index and the index calculated by median of indexes from

the appropriate cluster CLap (line 20). Data in storage are

replaced by data in array Sdata2 (line 21). Adaptive algorithm

repeats itself based on demands in the specification list.

D. Complexity analysis

Time complexity is related to the selected forecasting

method. Considering Algorithm 3, its complexity is O(n2),
where n is the size of the dataset. Since ARIMA method

(line 8) has O(n) complexity and the outer while loop iterates

whole dataset until n is equal to forecast period. In the worst

case, it is decreased by 1 at each iteration, leading to a O(n)
complexity. Further, both Algorithm 1 and Algorithm 2 have

complexity of O(n). Considering Algorithm 1, we analyze the

while loop in line 7, that iterates over the size of the dataset.

Algorithm 2 instead iterates over each cluster in the for loop

in line 3, whose number is always less than n. All other

operations have either a O(1) or a O(n) complexity, resulting

into an overall O(n2) time complexity. Such complexity may

be reduced by using less accurate forecast methods. Even

though a O(n2) is not suitable for big datasets, it can provide

acceptable response time in this scenario, since we target small

datasets due to the storage space limitations on the Edge.

VI. EVALUATION

First, we implement the algorithms in R language, using

the R forecast package. Then, we evaluate the results of the

approach by evaluating both the accuracy of the forecasts and

the amount of data that have to store on the Edge node.

Datasets are obtained by UMass Trace Repository [28] and

contain traces coming from the Smart* project [29] for purpose

of designing sustainable homes. These traces represent real

data and contain potential information for IoT actuators, that

makes these datasets appropriate samples for our experiments.

We have selected three datasets targeting different character-

istics of datasets, to show the applicability of our algorithm.

Table II shows some characteristics of used datasets such as

size (number of data points), periodicity, and range of values.

The first test case shows experimental scenario and applica-

tion of the adaptive algorithm on loaded dataset, focusing on

recognition and selection of clusters with stable forecast accu-

racy. The second test case shows the benefits of implementing

our algorithm in the Edge storage data management.

A. Experimental scenario

To explore the full potential of the adaptive algorithm,

we used the dataset with seasonality pattern that will have

more than one cluster with stable forecast accuracy. In this

subsection, we provide a step by step evaluation of the

algorithm. For the experiments, we manually defined some

rules to simulate the specification list. Forecast period is set

to 24, the same as periodicity of dataset. Forecast period stays

fixed in a current cycle, while a client can change the desired

forecast period in the specification list anytime. Then, we



TABLE II
INFORMATION ABOUT DATASETS.

Dataset Size Periodicity Range of values
1 336 24 10.06 - 31.33
2 600 1 65.2 - 79
3 7000 1 56.30 - 100.2

consider high threshold for forecast accuracy of 90%, since

we expect high forecast accuracy results due to the small

forecasting period in comparison with the available dataset

size.

In Figure 3, the upper graph represents the original dataset,

while the lower graph represents the result after applying ETS

forecast method validating the principle for multiple forecast

iterations on available dataset. Original dataset is composed

of 336 data points. As we already defined forecast period, the

last 24 data points become test data and the others will be

used in different amounts to predict the forecast period.

Bold blue points in lower graph indicate forecast accuracies

for corresponding number of used data, i.e. number of data that

is artificially decreased in each iteration in order to capture

different forecast values estimating the same forecast period.

For example, the first blue point shows us that in forecast

process 312 data points are used and the forecast accuracy

is slightly below 93%. In lower graph of Figure 3, some

stable behaviors of forecast accuracies are visible, and their

automatic recognition is performed by Algorithm 1. Two stable

clusters are selected and shown in Table III. The resulting

table provides mean values of accuracies in each cluster and

corresponding indexes of data points from the storage for

each cluster. Additionally, interval of available data points

shows how many data points remain between start/end index of

cluster. Sum of the corresponding cells gives the total number

of test data.

Selection of appropriate cluster is done according to Al-

gorithm 2. The forecast accuracy threshold for the current
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Fig. 3. Observed dataset and forecast accuracy observation with stable clusters
detection.

TABLE III
STABLE CLUSTERS OF FORECAST ACCURACY.

# Mean value
Range of cluster

indexes
Interval of available

data points
Start End

1 92.44903 12 48 300 264
2 94.13858 132 192 180 120

observations is compared with mean value of each cluster.

Thus, first cluster is selected at first as an appropriate cluster.

Further, checking the conditions for a better accuracy value

with smaller dataset, the second cluster replaces the old one

and becomes new selected cluster.

Finally, at the end of each cycle, data management action

will release data points starting from the oldest data point,

i.e. index 1, until middle of appropriate cluster, i.e. index

162, leaving 174 available data points in storage. Using our

approach, it is possible to reduce the amount of stored data

by 48% in one cycle, while keeping the accuracy of our

predictions above specified threshold.

B. Test case for storage management process and discussion

After describing the results of our algorithm, to assess its

benefits for Edge storage management, we compare two other

approaches with our contribution, the third approach.

a) Naive approach: The storage unit stores all upcoming

data until it reaches its limit. Then, the new data replace the

oldest data in the next iterations. Forecast period is estimated

based on all available data in storage unit.

b) Adaptive algorithm selecting most accurate cluster:
only stable clusters with highest forecast accuracy are consid-

ered. An unlimited storage capacity is assumed in this case.

c) Adaptive algorithm selecting most appropriate cluster:
based on Algorithm 2, a trade-off between stable forecast

accuracies and amount of used data is found.

In each approach, we simulate process of Edge storage

management under fixed amount of upcoming data. The aim is

to evaluate the effects of our algorithm, showing that with our

adaptive algorithm is possible to have less data in storage and

accurate forecasts for managing time-sensitive edge systems.

The used dataset is shown in Figure 4 and contains 600 data

points. In all cases of our experiment, we set the upcoming

amount of data on 100 data points per turn.

First, we consider the simulation based on our adaptive

algorithm. Considering upcoming amount of data, we have

six cycles (Figure 5) applying the proposed algorithm. Two

graphs per cycle are shown, where upper graph shows dataset

that is available in storage at that moment. Vertical dashed line

represents calculated marginal index as a separation between

data that will be released from storage (left side) and data

that remain in the storage (right side). The right side of the

vertical line repeats at the beginning of the next cycle. This

line corresponds to the middle of indexes of detected stable

clusters. In lower graphs, only appropriate clusters are marked

as a result of the proposed algorithm.



We consider first cycle in Figure 5. We should have 100

available data points, but precisely we have 96, because of test

data used as a defined forecast period from the specification

list. The accuracy threshold is set to 99%, and the algorithm

has found appropriate cluster in range between 24 and 36

available data points, what corresponds to cluster between data

indexes 60 and 72 in our original dataset. Middle index of that

cluster indicates that data management action will release data

points in range 1-66, i.e. indexes in range 67-100 will be kept

in storage. The process repeats for each cycle.

In Table IV all approaches are compared. In the naive and

the third approach we assume that storage is limited to 300

data points. Using the naive approach, storage unit stores 100

data points in each cycle, considering the space limitation,

resulting in using full storage capacity at the third iteration.

Therefore it starts to replace the oldest 100 data points with the

newest. In each cycle, forecast accuracy is calculated based on

total amount of data available in the storage. The results have

shown that in each cycle we have forecast accuracy of 99.89%

in average, while using the whole capacity after a while.

In second approach, releasing data based on the selection of

most accurate cluster results in forecast accuracy of 99.91% in

average, having 170 available data points in average per cycle.

In the third approach, that uses our adaptive algorithm,

storage space available is kept around 89% in average, while

satisfying the required forecast accuracy. Hereby is shown that

using our adaptive algorithm, we have 0.014713% of forecast

accuracy higher than in the naive approach, but 0.01041% of

forecast accuracy less than in the second approach. However,

in the third approach, in average 23.53% less data than in

second approach are used, and the amount of data decreases by

an average 73.02% in each cycle, without affecting specified

threshold for prediction accuracy, and allowing Edge nodes to

use excess capacity for other purposes. The reason for high

forecast accuracy values in all cases is caused from the small

forecast period. In Table V we compare the results of the three

approaches for a larger dataset. In this test case we consider

that storage is limited to 4000 data points, for the first and the

third approach. Further, we consider forecast period of 30 data

points. For the naive approach, results show that in each cycle

we have forecast accuracy of 99.30% in average, while using

the whole capacity after fourth cycle. For the second approach,
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Fig. 4. Observed dataset for simulation of edge storage management.

data are released according to the selection of most accurate

cluster. This results in forecast accuracy of 99.52% in average,

1692 available data points in average and the reduction of the

amount of data stored by an average 51.35% in each cycle.

In the third approach, based on our adaptive algorithm and

according to the simulated storage limitation, storage space

available is kept around 94.11% in average. Further, it results

in forecast accuracy of 99.32% in average, 1182 available data

points in average and a reduction of the amount data by an

average 80.27% per cycle, showing that in both test cases

our algorithm achieves the desired accuracy and substantially

reduces the amount of data needed on the Edge.

TABLE IV
SIMULATION 1 - RESULTS FOR 600 POINTS DATASET

Naive approach
Selecting most
accurate cluster

Selecting most
appropriate cluster

Cycle
Available

data
Accuracy

[%]
Available

data
Accuracy

[%]
Available

data
Accuracy

[%]

I 100 99.81 100 99.88 100 99.88

II 200 99.97 134 99.98 134 99.98

III 300 99.85 219 99.87 142 99.88

IV 300 99.92 214 99.95 122 99.80

V 300 99.90 193 99.95 136 99.97

VI 300 99.89 162 99.84 148 99.92

Average 99.89 170 99.91 130 99.90

TABLE V
SIMULATION 2 - RESULTS FOR 7000 POINTS DATASET

Naive approach
Selecting most
accurate cluster

Selecting most
appropriate cluster

Cycle
Available

data
Accuracy

[%]
Available

data
Accuracy

[%]
Available

data
Accuracy

[%]

I 1000 99.32 1000 99.28 1000 98.83

II 2000 99.22 1791 99.23 1145 99.24

III 3000 99.42 2686 99.89 1230 99.35

IV 4000 99.75 1525 99.73 1180 99.89

V 4000 98.67 1805 99.08 1220 98.68

VI 4000 99.41 1470 99.78 1200 99.61

VII 4000 99.29 1570 99.64 1300 99.62

Average 99.30 1692 99.52 1182 99.32

VII. RELATED WORK

The problem of reducing data transmission on the Edge

has been discussed by several works. In the work [11], a

solution for network-edge data reduction targeting IoT devices

is presented. However, this work does not consider storage.

Paper [12] proposes a dynamic compression-based technique

for sensor datasets. Other existing works, like [30], focus in-

stead on data storage structure, memory allocation strategy and

data compression in order to efficiently use storage capacity.

All these works try to reduce datasets size by maximizing

compression of generated data while reducing information

loss, but do not consider the impact on real-time needs for

sensor-based monitoring systems and corresponding actuators.

Existing works, like [31], [32] propose data staging for Edge

nodes including a control loop where data staging manager

takes care of retrieving and caching necessary data from

the Cloud. Proposing predefined fetching algorithm, these

approaches are suitable for a scenario where data are available
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Fig. 5. Evaluation of adaptive algorithm - cycles I-VI with available dataset and corresponding appropriate clusters.

to the mobile devices when it is needed, but it is not suitable

for our case, where we need to obtain fast and accurate

responses. Plus, their contributions do not consider neither the

performance of storage limited Edge nodes, nor the possibility

of targeting actuators with reliable predictions.

In comparison with traditional batch data analysis, data

stream classification has many open issues. In [33], holdout

accuracy is estimated using prequential accuracy. In other

works, two types of methods are used: a sliding window

with the most recent observations or fading factors that weigh

observations using a certain decay factor [34], [33]. However,

these approaches do not consider prediction of upcoming data

stream together with historical data. Our approach proposes an

adaptive algorithm that constantly checks new received data

and then together with remaining old data performs proposed

principles for edge storage management. A comprehensive

analysis of the advantages of having the intermediate layer

data centers close to the network edge has been done by Mehta

et al. [35].



VIII. CONCLUSION

Moving the analytics close to the source of data helps

to provide near real-time decisions for time-sensitive edge

systems. Providing an architecture model for data storage

management, we have made a step toward the developing of

algorithms able to cope with constant streams of data. The

approach is able to continuously monitor forecast accuracy

and to capture stable forecast accuracy clusters in order to

support qualitative decisions and in the same time manage the

space-limited storage at runtime using an adaptive algorithm.

Our simulation results show that our adaptive algorithm can

reduce the amount of data by an average 73.02% and 80.27%

in each cycle for the two datasets respectively, while satisfying

demands for forecast accuracy and thereby showing potential

for saving limited storage space.

In future work, we would like to extend our solution in

different ways. It would be interesting to introduce methods

to deal with multiple sources of data and corresponding issues,

such as missing data and outliers. Furthermore, we would like

to evaluate our application with different datasets, to show a

wide applicability of the proposed approach. Finally, it would

be interesting to take into account implications of involved

computation resources during the runtime and decrease of

complexity by improving algorithms.
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